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SUMMARY

Natural products are often large, synthetically intrac-
table molecules, yet frequently offer surprising
inroads into previously unexplored chemical space
for enzyme inhibitors. Argifin is a cyclic pentapeptide
that was originally isolated as a fungal natural
product. It competitively inhibits family 18 chitinases
by mimicking the chitooligosaccharide substrate of
these enzymes. Interestingly, argifin is a nanomolar
inhibitor of the bacterial-type subfamily of fungal
chitinases that possess an extensive chitin-binding
groove, but does not inhibit the much smaller,
plant-type enzymes from the same family that
are involved in fungal cell division and are thought
to be potential drug targets. Here we show that a
small, highly efficient, argifin-derived, nine-atom
fragment is a micromolar inhibitor of the plant-
type chitinase ChiA1 from the opportunistic path-
ogen Aspergillus fumigatus. Evaluation of the
binding mode with the first crystal structure of an
A. fumigatus plant-type chitinase reveals that the
compound binds the catalytic machinery in the
same manner as observed for argifin with the bacte-
rial-type chitinases. The structure of the complex
was used to guide synthesis of derivatives to explore
a pocket near the catalytic machinery. This work
provides synthetically tractable plant-type family 18
chitinase inhibitors from the repurposing of a natural
product.

INTRODUCTION

Compounds isolated from natural sources, natural products,

provide a wealth of bioactives that in some cases are directly

used as drugs and/or lead to the development of potent inhibi-

tors useful for characterization of enzymes of interest and the

design of future therapeutic drugs. Argifin is a natural product

that was first isolated from Gliocladium fungal cultures grown

from a soil sample collected in Micronesia (Omura et al., 2000).

The structure of argifin was shown to be an unusual arginine-
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containing cyclopentapeptide (Figure 1A) (Arai et al., 2000). Initial

studies of argifin found that it showed inhibition of a family 18

chitinase from Lucilia cuprina in a dose-dependent manner as

well as inhibiting chitinases from Streptomyces griseus and

Vibrio alginolyticus within the micromolar range (Omura et al.,

2000).

Chitinases are enzymes that cleave the b-(1,4) glycosidic bond

of chitin, a structural component in insect exoskeletons and

fungal cell walls. The CAZy glycoside hydrolase family 18

(GH18), as defined by amino acid sequence similarity (Cantarel

et al., 2009), contains a large number of chitinases expressed

in archaea, prokaryotes, and eukaryotes. It is subdivided into

two subfamilies, bacterial-type and plant-type family 18 chiti-

nases, according to sequence similarity, active site construction,

corresponding preferred activity (exo-chitinases versus endo-

chitinases, respectively), and occurrence in different organisms:

plants generally express plant-type GH18 enzymes, bacteria

generally use bacterial-type GH18 chitinases, and members of

both subfamilies have been found in fungi and vertebrates. It

has been hypothesized that bacterial-type chitinases in fungi

and bacteria are used to process chitin as a carbohydrate

source, whereas the fungal plant-type chitinases are involved

in cell wall remodeling and maintenance (Cantarel et al., 2009;

Griffith and Danishefsky, 1991; Jaques et al., 2003; Takaya

et al., 1998).

The fungal cell wall protects the cell from the environment; it is

a dynamic structure that is continually modified by enzymes to

facilitate growth (Latge, 2001). All fungal cell walls contain chitin

as a major component that is broken down by chitinases during

cell wall remodeling. Disrupting this process is expected to result

in a decrease of fungal viability and/or virulence, making plant-

type fungal chitinases potential targets for drugs against fungal

pathogens. Unfortunately, although there are numerous inhibitor

families targeting bacterial-type GH18 enzymes (Rao et al.,

2005; Schuttelkopf et al., 2006; Vaaje-Kolstad et al., 2004)

most of them perform poorly against these fungal plant-type

family 18 chitinases. An exception is the natural product allosa-

midin isolated from Streptomyces species, which acts on both

plant-type and bacterial-type family 18 chitinases (Sakuda

et al., 1987) and competitively inhibits the plant-type chitinase

CTS1 from Saccharomyces cerevisiae (ScCTS1, Ki = 0.61 mM;

Hurtado-Guerrero and van Aalten, 2007) and hevamine (Ki =

3.1 mM; Vaaje-Kolstad et al., 2004). Unfortunately, allosamidin

is a substrate analog with poor druglike properties (high
1, December 22, 2010 ª2010 Elsevier Ltd All rights reserved 1275
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Figure 1. Chemical Structures and Inhibitory Properties

(A) Chemical structure of the cyclopentapeptide argifin with its dimethylguanylurea moiety highlighted in red.

(B) Steady-state initial velocities measured at different substrate concentrations for AfChiA1. Reaction mixtures contained 200 nM of AfChiA1, 0.1 mg/ml BSA,

and 50–800 mM of the 4MU-NAG3 in McIlvaine buffer (100 mM citric acid and 200 mM sodium phosphate [pH 5.5]) to a final volume of 50 ml. Production of

4-methylumbelliferone was linear with time for the incubation period used (70 min at 37�C), and less than 10% of available substrate was hydrolyzed. The Km

was measured to be 300 ± 27 mM with a kcat of 3.0 s�1.

(C) Lineweaver-Burk plot showing a mixed mode of inhibition for the dimethylguanylurea fragment against AfChiA1. Mode of inhibition assays were set up as

described previously using 50 mM–1 mM 4MU-NAG3, and 60 mM–6 mM inhibitor.

(D) Lineweaver-Burk plot showing a noncompetitive mode of inhibition for the phenyl derivative 6 using the same reaction parameters.
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molecular weight, glycosidic bonds, and a cLogP of�5.2) and its

synthesis is complicated and costly (Blattner et al., 1996; Kassab

and Ganem, 1999). Interestingly, a fragment identified from the

large natural product argifin, dimethylguanylurea (Figure 1A),

has recently been identified as the minimal fragment necessary

and sufficient for competitive inhibition of the bacterial-type chi-

tinases (Andersen et al., 2008). Because the catalytic machinery

is conserved across all GH18 family members, it can be

hypothesized that the fragment molecule would also inhibit the
1276 Chemistry & Biology 17, 1275–1281, December 22, 2010 ª2010
plant-type family 18 enzymes and provide a template for the

much-needed development of potent, specific inhibitors for

this class of chitinases.

Here, we report the inhibitory activity of both argifin-derived

and newly synthesized dimethylguanylurea fragments against

the Aspergillus fumigatus plant-type chitinase ChiA1 (AfChiA1)

as well as the crystal structure of this enzyme in complex with

themost potent of these inhibitors.A. fumigatus is a saprotrophic

fungus that is widespread in nature and is involved in carbon and
Elsevier Ltd All rights reserved



Table 1. Structures and Enzyme Inhibition of the Argifin-Derived

Fragments

R IC50 (mM)

1 CH3 79 ± 8

2 CH3CH2 310 ± 7

3 CH3(CH2)2 62 ± 1

4 CH3(CH2)3 38 ± 7

5 42 ± 1.3

6 Ph 112 ± 1

7 PhCH2 299 ± 4

allosamidin

127 ± 14

argifin >3.8 mM
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nitrogen recycling (Chazalet et al., 1998). Although the spores

are not harmful to healthy individuals, A. fumigatus is an oppor-

tunistic pathogen that can colonize the lungs of immunocompro-

mised individuals, frequently resulting in life-threatening invasive

aspergillosis (Brakhage and Langfelder, 2002; Singh and Pater-

son, 2005). The deconstruction of the natural product, argifin,

and the characterization of its fragments as inhibitors ofAfChiA1,

demonstrates the importance of combining natural product

investigation with chemical deconvolution and establishes

a new family of efficient and synthetically attractive leads for

the development of inhibitors against medically relevant GH18

chitinases.
Table 2. Summary of Data Collection and Structure Refinement Sta

apo-AfChiA1

Resolution (Å) 20.00–2.00 (2.05–2.00)

Unit cell a = 76.7 Å, b = 126.1 Å, c = 213.4 Å

No. of unique reflections 69,723

Redundancy 4.1 (4.0)

Rmerge 0.099 (0.438)

I/s(I) 10.8 (2.6)

Completeness (%) 100.0 (99.8)

R, Rfree 0.201 (0.241)

<B > protein (Å2) 14.0

<B > ligand (Å2) n/a

Rmsd from ideal geometry

Bond lengths (Å) 0.015

Bond angles (�) 1.38

Note values for the highest resolution shell are given in brackets.
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RESULTS AND DISCUSSION

An Argifin Fragment Inhibits Fungal Chitinases Involved
in Cell Division
Argifin (Figure 1A) is a natural product that inhibits bacterial-type

family 18 chitinases in the low nanomolar range by mimicking

enzyme-substrate interactions (Houston et al., 2002; Rao et al.,

2005). We recently reported a chemical dissection of argifin,

revealing that the dimethylguanylurea fragment (compound 1 in

Table 1 and Figure 1A) still competitively inhibits the bacterial-

type chitinase B1 from A. fumigatus (AfChiB1) (Andersen et al.,

2008). This finding encouraged us to investigate inhibition of the

plant-type fungal chitinases that are thought to be involved in

cell wall remodelling during cell division (Selvaggini et al., 2004).

We cloned the previously uncharacterized chitinase A1 from

A. fumigatus (AfChiA1, 38% catalytic core sequence identity to

the plant-type chitinase CTS1 from S. cerevisiae, ScCTS1) and

purified the protein fromaPichia expression system. The enzyme

hydrolyzes 4MU-NAG3 with a Km of 300 ± 27 mM and a kcat of

3.0 s�1 (Figure 1B). Strikingly, the large allosamidin pseudotrisac-

charide, generally a potent GH18 inhibitor, inhibits AfChiA1 with

an IC50 of only 127±14mM(Table 1). Similarly, the natural product

argifin (Figure 1A) does not inhibit AfChiA1 (IC50 > 3.8 mM).

However, the nine-atom fragment 1 (Figure 1A), derived from

argifin, has an IC50 of 79 ± 8 mM against the enzyme (Table 1),

compared to 500 ± 20 mM previously reported for AfChiB1

(Andersen et al., 2008). Mode of inhibition studies suggest that

1 is not a purely competitive inhibitor of AfChiA1 (Figure 1C). In

terms of ligand efficiency (i.e., the contribution to the free energy

of binding per inhibitor atom), compound 1 achieves an excellent

value of�0.93 kcal$mol�1$atom�1, whereas allosamidin exhibits

only moderate efficiency at �0.19 kcal$mol�1$atom�1.

AfChiA1 Possesses a Shallow Active Site That
Is Efficiently Occupied by the Argifin Fragment
To further investigate themode of inhibition of the argifin-derived

fragment 1 and to provide a platform for rational optimization, we

determined the crystal structure of AfChiA1, both in its apo-form

and in complex with 1 (Table 2). Data for the apo-structure were
tistics

AfChiA1-1 AfChiA1-6

25.01–2.3 30.00–2.35

a, b = 100 Å, c = 111.2 Å a, b = 100 Å, c = 111.2 Å

55,123 51,912

4.1 (3.1) 3.0 (3.2)

0.109 (0.58) 0.114 (0.406)

12.4 (5.4) 17.3 (5.2)

99.9 (98) 98.5 (94.1)

0.241 (0.285) 0.259 (0.298)

26.1 16.9

33.1 24.4

0.0218 0.0202

1.912 1.837
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Figure 2. Structural Analysis of AfChiA1

Inhibitor Complexes

(A) Comparison of the AfChiB1-argifin complex

structure (left, PDB id 1W9V) and the complex of

AfChiA1 with 1 (right). The proteins are shown in

cartoon representation (a helices in red, b strands

in blue) with the ligands drawn as sticks (green).

The extra a/b domain present in the bacterial-

type fungal chitinases, but lacking in the plant-

type fungal chitinases, is highlighted in yellow.

(B) Surface view of the structures in (A). The

AfChiB1 and AfChiA1 surfaces are shaded by

sequence identity among A. fumigatus bacterial-

type and plant-type GH18 chitinases, respectively

(white = nonconserved, dark blue = completely

conserved). Ligands are shown as in (A). The extra

a/b domain present in the bacterial-type fungal

chitinases, but lacking in the plant-type fungal chi-

tinases, is highlighted in yellow.

(C) The active site of AfChiA1 in complex with 1/6

and AfChiB1 in complex with argifin. Side chains

for important residues are shown as gray sticks

and labeled. Ligands are shown as purple sticks,

a water molecule is represented as an orange

ball. Likely hydrogen bonds are indicated by green

dashed lines. Electron density is shown contoured

to 2.5 s as a cyan mesh for AfChiA1 ligands.
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collected to 2.0 Å resolution, solved by molecular replacement

and refined to an Rfree of 0.249 with good stereochemistry.

AfChiA1 has the (b/a)8 barrel fold common to all family 18

glycoside hydrolases (Figure 1A) (Davies and Henrissat, 1995).

Most of the loops connecting the helices and strands are rela-

tively short; exceptions are the b2-a2 loop, which contains

three minimal b strands (labeled b20, b200 and b200 0) that, together
with the C-terminal end of the extended b2 itself, form a small

four-stranded mixed b sheet, and the b6-a6 loop, which includes

the short a50 helix. Helix a8 is interrupted by a minimal b sheet

comprising strands b9 and b10 (Figure 1A). Comparison with

existing structures of GH18 family member proteins shows that

AfChiA1 is most similar to S. cerevisiae CTS1 (PDB id 2UY2).

The agreement between the two structures is good for the

core (b/a)8 barrel (overall RMSD = 1.15 Å for 265 Ca atoms),

whereas some conformational differences exist in the connect-

ing loops, many of which harbor insertions/deletions.

The AfChiA1 active site lies at the C-terminal opening of

the b-barrel (Figure 2A). It is thus defined by the (mostly) very

short ba-loops, which gives it the overall open, and apparently
1278 Chemistry & Biology 17, 1275–1281, December 22, 2010 ª2010 Elsevier Ltd All rights re
featureless, architecture also seen in

ScCTS1 (Hurtado-Guerrero and van

Aalten, 2007) and common to plant-type

family 18 chitinases (Davies and Henris-

sat, 1995). However, in the AfChiA1

active site the bulky Tyr125, replacing

a serine in ScCTS1, appears to partially

block access to the catalytic site. The

ligand complexes on the other hand

reveal Tyr125 to be conformationally flex-

ible and show it pointing away from the

active site, suggesting that its presence
would not have a significant effect on substrate/ligand

specificity.

The exposed AfChiA1 active site contrasts with AfChiB1 (Rao

et al., 2005) and other bacterial-type chitinases, which harbor

larger ba-loops (including one incorporating an entire a/b

domain) that form a deep active site groove (Figure 2B), lined

by several solvent-exposed aromatic residues, including

Trp137 (Figure 2C). It is these differences in active site construc-

tion that explain the different affinities for argifin by AfChiA1 and

AfChiB1: the AfChiB1-argifin complex structure shows that the

inhibitor is engulfed by the wall of the active site groove, whereas

these walls are nonexistent in AfChiA1 (Figure 2B). Nonetheless,

the catalytic machinery itself is relatively well-conserved among

all GH18 chitinases and AfChiA1 is no exception, sporting hall-

mark residues of the GH18 family, including the solvent-exposed

tryptophan (Trp312) that forms the bottom of the �1 sugar-

binding subsite, the catalytic DxE motif (Asp172 and Glu174),

and conserved tyrosines Tyr232 and Tyr34 (Figure 2C).

The structure ofAfChiA1 in complex with 1was refined against

2.3 Å synchrotron diffraction data, revealing clear density for the
served
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inhibitor (Table 2 and Figure 2C). The ligand is bound in the active

site in a position and orientation similar to the equivalent frag-

ment in the AfChiB1-argifin complex (Andersen et al., 2008)

(Figures 2B and 2C), where 1 forms a bidentate hydrogen bond

with the side chain of Glu174 (the catalytic acid) and also

donates a single hydrogen bond to the Asp172 carboxylate.

Additionally, the inhibitor accepts a weak hydrogen bond from

Tyr232 and stacks with the Trp312 side chain. Surprisingly, clear

density for a second ligand molecule can be observed sitting in

a shallow groove just outside the catalytic pocket (Figure 2C).

The groove is lined by the side chains of Trp312 and Gln37 on

one side and the backbone atoms of Ala124 and Tyr125 on the

other side, whereas its floor is contributed by the phenyl moiety

of Phe60. The ligand molecule forms one direct hydrogen bond

with the protein, from the backbone amide of Ala124 to a depro-

tonated ligand backbone nitrogen. The ligand backbone also

donates a hydrogen bond to a water molecule, which is bound

in the groove through two hydrogen bonds to the backbone

carbonyls of Gly122 and Tyr125. It is possible that the presence

of this second inhibitor binding site explains the observed mixed

inhibition pattern (Figure 1C).

Chemical Elaboration of the Argifin Fragment Identifies
Additional Binding Pockets
As stated earlier, compound 1 is a highly efficient

(�0.93 kcal$mol�1$atom�1) plant-type chitinase inhibitor,

compared to the widely studied, but less synthetically tractable,

natural product pseudotrisaccharide inhibitor allosamidin

(�0.19 kcal$mol�1$atom�1) (Hopkins et al., 2004). Furthermore,

the guanylurea moiety would be a suitable core for high-

throughput synthesis of a library of fragments, similar to what

has been achieved recently for alpha-glucosidases, starting

from a valienamine scaffold (Lysek et al., 2006).

To explore this, a number of analogs of 1 were synthesized

using a three-step procedure, via conversion of the appropriate

amine to the N-,N0-bis(tert-butoxycarbonyl)guanidine derivative

(Feichtinger et al., 1998), followed by treatment with methyl-

amine to generate the desired guanylurea (Miel and Rault,

1998) (Table 1). Compounds 2–7 were designed on the basis

of the binding mode of 1 in the catalytic pocket, which suggests

that only the methyl group at the guanyl end of 1 is available for

derivatization (Figure 2C). Only moderately sized moieties were

explored, given the relatively featureless surface beyond the

immediate surroundings of the catalytic pocket and the knowl-

edge that the full argifin molecule itself does not inhibit AfChiA1.

A number of alkyl and ring extensions were explored (Table 1)

and were found to inhibit AfChiA1 with IC50 values between

38 mM and 310 mM, compared to 79 mM for the starting

compound. Although some of the derivatives appeared to give

modest improvements in inhibition (i.e., up to 2-fold), this is not

considered to be significant given the general accuracy of IC50

measurements. Further examinations into the effect from substi-

tutions of 1 on mode of inhibition and binding were focused on

compound 6. As shown in Figure 1C, the mode of inhibition is

noncompetitive (Figure 1D). This compound was also a 10-fold

stronger inhibitor of AfChiB1 (IC50 = 210 ± 40) compared to the

parent compound 1.

A structure of AfChiA1 in complex with 6 was refined against

2.4 Å synchrotron diffraction data (Table 2). The complex shows
Chemistry & Biology 17, 1275–128
that 6 adopts a virtually identical binding mode to the parent

compound 1 (Figure 2C; maximum atomic positional shift =

0.4 Å), with an identical hydrogen bonding pattern. The phenyl

ring does not make any specific interactions with the protein

and correspondingly is poorly ordered (Figure 2C). This lack of

interactions in combination with the increased disorder of 6

compared to 1 explains the reduced IC50 observed for 6. In

contrast to the AfChiA1-1 complex, there is no evidence for

a secondary binding site, compatible with the notion that the

phenyl ring of a ligand molecule bound in the secondary site

would clash with the ligand occupying the catalytic pocket

(Figure 2).

Conclusion
On the basis of the dissection of the natural product argifin, an

inhibitor of bacterial-type GH18 chitinases (Figure 1A), we have

characterized the activity of dimethylguanylurea (1) and its deriv-

atives (2-7) against a plant-type chitinase, ChiA1 from the fungal

pathogen Aspergillus fumigatus. The small compounds are

found to be attractive starting points for AfChiA1 inhibitors,

with IC50 values in the micromolar range. In fact, 1 is a

better inhibitor of AfChiA1 (IC50 = 79 mM) than it is of the bacte-

rial-type chitinase AfChiB1 (IC50 = 500 mM; (Andersen et al.,

2008)), reversing the relative affinities observed for its parent

compound, argifin. Moreover, 1 is already a better AfChiA1

inhibitor than the broad-spectrum (and generally low nanomolar)

allosamidin inhibitor. This fact is particularly striking when

expressed as ligand efficiency (�0.93 kcal$mol�1$atom�1 for

1 versus �0.19 kcal$mol�1$atom�1 for allosamidin), taking into

account the almost five-fold larger mass of allosamidin. The first

structures ofAfChiA1 show that 1 itself, as well as its derivative 6,

bind to the enzyme exclusively through interactions with the

catalytic machinery conserved across GH18 hydrolases, ex-

plaining their ability to inhibit AfChiA1 and suggesting that they

might represent a family of pan-GH18 chitinase inhibitors. The

structures also reveal AfChiA1 to adopt the (minimal) TIM barrel

fold typical of (plant-type) GH18 family members and shows that

it is closely related to ScCTS1, the only other known fungal plant-

type GH18 structure, sharing its open active site architecture,

which explains the poor affinity of this enzyme for argifin and

other inhibitors of bacterial-type chitinases.

According to its observed binding mode to AfChiA1, several

simple derivatives of 1 were synthesized and tested against

the enzyme. None of these derivatives showed significantly

improved binding, which is not unexpected, given that the

solvent-exposed AfChiA1 active site does not provide many

functional groups to interact with. At the same time, it is encour-

aging that most of the derivatives were also not significantly

worse binders, suggesting that it could be energetically feasible

to further build up the outward-pointing side of 1 to eventually

reach interactable groups on the enzyme surface. Such modifi-

cations could allow us to take this scaffold further and design

bulkier compounds that retain their affinity for plant-type GH18

proteins, but lose binding to the more restricted bacterial-type

GH18 active site, thus yielding inhibitors specific to plant-type

chitinases that would be of interest as chemical tools to dissect

the precise biological roles of different chitinases.

Intriguingly, the structure of AfChiA1 in complex with 1 reveals

that, in addition to the catalytic-site bound inhibitor, a second
1, December 22, 2010 ª2010 Elsevier Ltd All rights reserved 1279
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ligand molecule occupies a shallow groove close to the catalytic

pocket. Although this second ligand makes few obviously ener-

getically favorable interactions with the enzyme, the clear elec-

tron density observed for it suggests that it does bind with

reasonable affinity. It might thus be possible to exploit its

observed binding mode as a template for the further elaboration

of the scaffold, possibly by simply joining twomolecules of 1 into

a new inhibitor able to bind in both pockets.

SIGNIFICANCE

Natural products are often large, synthetically intractable

molecules, yet frequently offer surprising inroads into previ-

ously unexplored chemical space for enzyme inhibitors. This

work shows how, aided by detailed structural information,

the large natural product chitinase inhibitor argifin can be

dissected down to a tiny nine-atom active fragment that

can then be used as a scaffold to develop micromolar inhib-

itors for a chitinase from the opportunistic pathogen Asper-

gillus fumigatus.

EXPERIMENTAL PROCEDURES

Synthesis of Dimethylguanylurea and Derivatives

Compounds 1–7 were synthesized by a three-step procedure as follows.

Starting from the amine, R-NH2 (R as designated in Table 1), the correspond-

ing bis-tert-butoxycarbonylguanidine derivatives were generated by reaction

with 1,3-di-tert-butoxycarbonyl-2-(trifluoromethylsulfonyl)guanidine, accord-

ing to the method of Feichtinger et al. (1998). Transformation to the desired

guanylureas was then effected in two steps, by aminolysis with methylamine

in tetrahydrofuran (Miel and Rault, 1998), followed by removal of the remaining

tert-butoxycarbonyl group with trifluoroacetic acid. The final compounds were

all isolated as the corresponding trifluoroacetate salts, with the exception of 7,

which was converted to the free base by neutralization with saturated aqueous

sodium hydrogencarbonate. Compounds 1–7 were fully characterized by 1H

NMR (JEOL Delta at 270 MHz, or Varian Mercury-VX at 400 MHz), 13C NMR

(JEOL Delta at 68 MHz), and high-resolution mass spectrometry (Bruker

MicroTOF autospec electrospray ionisation instrument). Purities were verified

by analytical RP-HPLC on a Dionex systemwith a Gemini 5mC18 110A column,

150 3 4.6 mm (Phenomenex, UK).

Cloning and Purification

The coding sequence for residues Ser29-Leu335 of Aspergillus fumigatus

chitinase A (AfChiA1; UniProt ID: Q873Y0) was cloned by PCR from an

A. fumigatus cDNA library (kindly provided by Jean-Paul Latgé, Paris) using

the forward primer 50-GCGAATTCTCCAACCTTGCCATCTACTGGGGTC-30

and the reverse primer 50-CTGCGGCCGCTCAAAGAATATCCTTCATGTGGT

CTGCATAGGG-30, containing an EcoRI and a NotI restriction site, respec-

tively. The PCR product was initially cloned into the PCR cloning vector

pSC-B (Stratagene) and subcloned into the EcoRI and NotI sites of the Pichia

pastoris expression vector pPICZaA (Invitrogen). Subsequently, to obtain

a soluble and crystallizable protein, we re-added the codons for residues

Leu336 and His337 by site directed mutagenesis using the mutagenesis oligo-

nucleotide pair 50-GACCACATGAAGGATATTCTTTTGCACTGAGCGGCCGC

CAGCTTTCTAG-30 and 50-CTAGAAAGCTGGCGGCCGCTCAGTGCAAAAGA

ATATCCTTCATGTGGTC-30. Site-directed mutagenesis was carried out

following the QuikChange Site-Directed Mutagenesis protocol (Stratagene),

using the KOD HotStart DNA polymerase (Novagene). All plasmids were veri-

fied by sequencing (DNA Sequencing Service, College of Life Sciences,

University of Dundee; www.dnaseq.co.uk).

The plasmid was isolated from E. coli strain DH5a, linearized with SacII, and

used to transform Pichia pastoris strain X-33 using the LiCl method (Invitrogen)

or using the Pichia EasyComp Transformation Kit (Invitrogen). Transformants

were selected on YPD plates (1% [w/v] yeast extract, 2% [w/v] peptone, and
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2% [w/v] dextrose) containing 100 mg/ml of zeocin (Invitrogen). Batch cultures

were performed in a 100-ml volume of BMGYmedium (1% [w/v] yeast extract,

2% [w/v] peptone, 100 mM potassium phosphate [pH 6.0], 1.34% [w/v] yeast

nitrogen base, and 1% [v/v] glycerol)0 50 ml were used to inoculate 500 ml of

BMGY medium overnight at 30�C, and expression was induced by methanol

1% (v/v) for 72 hr at room temperature in a shaking incubator (270 rpm). Yeast

cells were harvested by centrifugation at 3480 g for 30 min. The supernatants

containing soluble AfChiA1 were filtered to 0.2 micron, concentrated to 50 ml

using a Vivaflow 200 cassette (10,000 MWCO, PES membrane; Vivascience),

and dialyzed against water.

The samples were then loaded onto a 2 3 5 ml HiTrap Q FF column (Amer-

sham Biosciences) that had been equilibrated with 10 column volumes of

25 mM Tris (pH 7.5) on an AKTA purifier system. Following loading, the column

was washed with 10 column volumes of 25 mM Tris (pH 7.5). The protein was

eluted with a salt gradient (0–500 mM NaCl) over 20 column volumes, collect-

ing 2 ml fractions. The fractions containing the proteins were then pooled and

concentrated to 5 ml. Subsequently, gel filtration was carried out using

a Superdex 75 XK26/60 column in 25 mM Tris and 150 mM NaCl (pH 7.5).

The concentrated AfChiA1 protein sample was used for both kinetic analysis

and crystallization trials.

Crystallization and Structure Determination

The protein was concentrated to between 28 and 36 mg$ml�1 and was

crystallized by hanging drop vapor diffusion over a reservoir containing

0.42–0.58 M NaH2PO4 and 0.74–0.83 M K2HPO4; usable crystals grew over

a few days. After cryoprotection by short immersion in 2.5 M Li2SO4, native

data were collected at 100 K in house. To obtain complex structures, AfChiA1

crystals were soaked in the presence of inhibitor from a 10 mM stock. The

inhibitor was added directly to the crystal growth drop at a final concentration

of 1–5 mM. After soaking for 1–10min and cryoprotection, data were collected

at 100 K on beamline ID14-EH2 (wavelength 0.953 Å) at the European

Synchrotron Radiation Facility (ESRF, Grenoble, France).

AfChiA1 forms either orthorhombic crystals (crystal form I, space group

I212121, unit cell dimensions a = 76.6 Å, b = 125.8 Å, c = 211.7 Å) with twomole-

cules per asymmetric unit or trigonal crystals (crystal form II, space group P32,

a = b = 100.0 Å, c = 111.2 Å) with three molecules per asymmetric unit. All data

were processed and scaled using HKL software (Otwinowski et al., 2003) to

resolutions of 2.0 Å (native), 2.3 Å (complex with 1), and 2.4 Å (complex with 6)

(Table 2). The apo-data (crystal form I) were solved by molecular replacement

with AMoRe (Navaza, 2001) using the S. cerevisiae CTS1 apo-structure

(PDB id 2UY2) (Hurtado-Guerrero and van Aalten, 2007) as a search model

yielding the expected two molecules per asymmetric unit, whereas the ligand

complexes (crystal form II) were solved bymolecular replacement withMolRep

(Vagin and Teplyakov, 2010) using the refined AfChiA1 apo structure. Refine-

ment of the AfChiA1 structures (Table 2) proceeded through rounds of minimi-

zation with REFMAC5 (Vagin et al., 2004) and model building with Coot

(Emsley and Cowtan, 2004). The R-factors for the complex structures are rela-

tively high, most likely because of disorder of the third monomer. Because of

this disorder as well as the structural similarity of the first two monomers for all

structures (RMSD values between 0.15 Å and 0.35 Å for�310Caswithout NCS

restraints) atoms, the further discussion will focus on the first monomer (i.e.,

chain A) only, unless noted otherwise. Ligand coordinates and topologies

were generated with PRODRG for the complex structures (Schuttelkopf and

van Aalten, 2004). In allAfChiA1molecules built, Cys81 falls into the disallowed

region of the Ramachandran plot, despite having been modeled in agreement

with clear electron density. This residue participates in an intramolecular disul-

fide bridge, which might necessitate its strained backbone conformation.

Enzyme Assays

Michaelis-Menten parameters ofAfChiA1were determined using 4-methylum-

belliferyl b-D-N,N0,N00-triacetylchitotrioside (4MU-NAG3). Standard reaction

mixtures contained 200 nM of AfChiA1, 0.1 mg/ml BSA, and 50–800 mM of

the fluorogenic substrate in McIlvaine buffer (100 mM citric acid and

200 mM sodium phosphate [pH 5.5]) to a final volume of 50 ml. Reaction

mixtures were incubated for 70 min at 37�C, after which the reaction was

stopped with the addition of 25 mM of 3 M glycine-NaOH (pH 10.3). The fluo-

rescence of the released 4-methyl-umbelliferone was quantified using a Flx
800 microtiterplate fluorescence reader (Bio-Tek Instruments Inc.) (excitation
Elsevier Ltd All rights reserved
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366 nm, emission 445 nm). Experiments were performed in triplicate. Produc-

tion of 4-methylumbelliferone was linear with time for the incubation period

used, and less than 10% of available substrate was hydrolyzed. The IC50

values of the argifin fragments against AfChiA1were determined using the

same protocol but with a constant substrate concentration of 100 mM and

300 nM–6 mM inhibitor. Similarly, the mode of inhibition assays were set

up as previously described above using 50 mM–1 mM 4MU-NAG3, and

60 mM–6 mM inhibitor.
ACCESSION NUMBERS

The structure factors and models have been deposited in the Protein Data

Bank under PDB ID numbers 2xvp, 2xuc, and 2xvn.
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